skip to main content


Search for: All records

Creators/Authors contains: "Singh, Avinash"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    S190426c/GW190426_152155 was the first probable neutron star–black hole merger candidate detected by the LIGO-Virgo Collaboration. We undertook a tiled search for optical counterparts of this event using the 0.7-m GROWTH-India Telescope. Over a period of two weeks, we obtained multiple observations over a 22.1 deg2 area, with a 17.5 per cent probability of containing the source location. Initial efforts included obtaining photometry of sources reported by various groups, and a visual search for sources in all galaxies contained in the region. Subsequently, we have developed an image subtraction and candidate vetting pipeline with $\sim 94{{\ \rm per\ cent}}$ efficiency for transient detection. Processing the data with this pipeline, we find several transients, but none that are compatible with kilonova models. We present the details of our observations, the working of our pipeline, results from the search, and our interpretations of the non-detections that will work as a pathfinder during the O4 run of LVK.

     
    more » « less
  2. Abstract

    The photoluminescence (PL) saturation of CdSe/ZnS core/shell inorganic semiconductor quantum dots (QDs) and its utility as a probe for saturated excitation (SAX) microscopy are reported. Under saturating excitation power densities, the PL signal was demodulated and recorded at harmonics of the fundamental frequency. For commercially available Qdot® 655 ITK™ QDs, the power density required to achieve saturation was dependent upon the local environment of the QDs. For QDs deposited and dried on a glass substrate, the excitation power density required for PL saturation was less than 1 kW/cm2. Compared to this, saturation of PL for QDs dispersed in water required an excitation power density greater than 200 kW/cm2. This observation is manifested as a limitation in the imaging of hydrated samples, as demonstrated for HeLa cells labelled with biotinylated‐phalloidin followed by labelling with streptavidin‐coated QDs. As saturation affects the obtained spatial resolution in several imaging formats, including confocal imaging, the provided data will aid in obtaining the optimal spatial resolution when using QD probes to image biological samples.

     
    more » « less
  3. We present high-cadence UV, optical, and near-infrared data on the luminous Type II-P supernova SN 2017gmr from hours after discovery through the first 180 days. SN 2017gmr does not show signs of narrow, high-ionization emission lines in the early optical spectra, yet the optical light-curve evolution suggests that an extra energy source from circumstellar medium (CSM) interaction must be present for at least 2 days after explosion. Modeling of the early light curve indicates a ∼ 500 Re progenitor radius, consistent with a rather compact red supergiant, and late-time luminosities indicate that up to 0.130 ± 0.026 Me of 56Ni are present, if the light curve is solely powered by radioactive decay, although the 56Ni mass may be lower if CSM interaction contributes to the post-plateau luminosity. Prominent multipeaked emission lines of Hα and [O I] emerge after day 154, as a result of either an asymmetric explosion or asymmetries in the CSM. The lack of narrow lines within the first 2 days of explosion in the likely presence of CSM interaction may be an example of close, dense, asymmetric CSM that is quickly enveloped by the spherical supernova ejecta. 
    more » « less
  4. null (Ed.)